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Twist boundaries in the deep-UV nonlinear optical crystal KBe2BO3F2 (KBBF) are studied

through first-principles calculations. It was found that the optical qualities and the capability for

second-harmonic generation (SHG) in KBBF obtained from the different single-crystal growth

methods are very different. These properties are associated with the presence of defects. Our

studies demonstrate that the (0001) twist boundaries in KBBF are easily formed due to the quite

weak interaction between the in-plane layers. These grain boundaries have very small influences on

the modifications of the UV optical absorption edge and the refractive indices in KBBF. However,

the SHG conversion efficiency in KBBF can be significantly deteriorated as the (0001) twist

boundaries occur, so it is necessary to eliminate these twist boundaries during the single-crystal

growth processes. Our theoretical results are consistent with experimental observations. VC 2011
American Institute of Physics. [doi:10.1063/1.3569836]

I. INTRODUCTION

KBe2BO3F2 (KBBF) crystal is so far the sole nonlinear

optical (NLO) crystal that can break the “200-nm wall”1

in the deep-ultraviolet (DUV) spectrum using direct

second-harmonic generation (SHG), hence, it has important

applications in super-high-resolution laser photoemission

spectrography and photolithography.2 However, KBBF

grows thin and platelike (only 3�4 mm thickness along the

c-axis) by the standard flux crystal-growth method,3,4 which

severely hinders its applications. Recently, a different crys-

tal-growth method, i.e., the hydrothermal method, has been

employed5,6 and KBBF crystals with thicknesses approach-

ing 1 cm have been achieved. However, the optical proper-

ties of hydrothermal-grown (H-) KBBF crystals are quite

different from those of flux-grown (F-) crystals: the optical

uniformity in the former crystals is much worse than in the

latter and, more evidently, the SHG capability in the H-

KBBF crystals is much deteriorated; typically its conversion

efficiency is several times lower than in the F-crystals. All

these phenomena suggest that the H-KBBF crystals might

not be suitable for DUV SHG at the current stage of develop-

ment. Therefore, it is important to elucidate the mechanisms

that cause these optical differences in the H- and F-KBBF

crystals, which would be of great benefit to the improvement

of optical performance in H-KBBF.

Detailed structural comparisons between the H-KBBF

and F-KBBF have been performed by Yu et al.7 They

found that the x-ray diffraction (XRD) patterns in the

H-KBBF crystal are almost identical with those in the

F-KBBF, despite that three very small peaks occur in the

former’s XRD spectrum. This indicates that the KBBF

crystals obtained by the different growth methods possess

very similar basic structural features. Meanwhile, there is

no evident distinction between the constituent chemical

element content in the F- and H-KBBF crystals, suggesting

that atomic vacancies or impurities are not the main factors

in producing the optical difference. Further transmission

electron microscope measurements demonstrated that the

H-KBBF crystal has many more stacking faults, such as

dislocations, grain boundaries, and twins, compared to the

F-KBBF. Therefore, Yu et al.7 concluded that the optical

differences mainly resulted from the presence of structural

defects in KBBF. However, it is still unclear from experi-

mental measurements how the defects affect the optical

properties in KBBF, owing to the complicated crystalline

environments. These complicated situations can actually

be simplified by adopting another research strategy, i.e.,

atomic modeling, which is anticipated to provide insight

into the influences of respective defects in an effective

and precise way. We believe that these theoretical studies

can be widely applied to other nonlinear optical crystals

equally.

The space group of KBBF is R32 [point group D3

(32)],8 belonging to the uniaxial class, with dimensions of

a¼ b¼ 4.427(4) Å, c¼ 18.744(9) Å, and a Z value of 3. In

each unit cell, there are three (Be2F2BO3)n!1 two-dimen-

sional (2D) layers perpendicular to the c-axis [Fig. 1(a)], in

which all planar (BO3) groups are aligned in the same orien-

tation [comparison of the blue (dark gray) and green (light

gray) triangles in Fig. 1(b)]. In each in-plane layer three ter-

minal O atoms of all (BO3) groups link with the nearest

neighbor, while each Be atom links with a F atom outside of

the layer. Accordingly, one may easily find that one of the

simplest stacking faults in KBBF is the twist grain boundary

by rotating the (Be2F2BO3) layer about the c-axis, forming

the (0001) twist boundary. Indeed this type of grain

a)Author to whom correspondence should be addressed. Electronic mail:

zslin@mail.ipc.ac.cn.

0021-8979/2011/109(7)/073721/7/$30.00 VC 2011 American Institute of Physics109, 073721-1

JOURNAL OF APPLIED PHYSICS 109, 073721 (2011)

Downloaded 17 Apr 2011 to 210.72.154.199. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3569836
http://dx.doi.org/10.1063/1.3569836
http://dx.doi.org/10.1063/1.3569836
http://dx.doi.org/10.1063/1.3569836
http://dx.doi.org/10.1063/1.3569836


boundary is one of the main stacking faults observed in the

H-crystals, much more commonly than in the F-crystals.7

Therefore, it is important to understand the influences of the

(0001) twist boundaries on the modifications of the optical

effects in KBBF.

In this work, the structural features of the (0001) twist

boundaries present in KBBF are studied, and their influen-

ces on optical properties are investigated using first-princi-

ples computational approaches. It is found that the (0001)

twist boundaries are indeed relatively easy to form because

of the quite small twist boundary energy, and their influ-

ence on the modifications of both the optical UV absorp-

tion edge and linear optical effects in the KBBF crystals is

only in a very tiny degree. However, the SHG capability in

KBBF can be heavily deteriorated by the (0001) twist

boundaries since the microscopic structural units are out of

alignment therein.

II. (0001) TWIST BOUNDARIES IN KBBF

In a hexagonal lattice the (0001) twist boundary is

formed by rotating the a-b layers about the c-axis with an

angle (e.g., k), so the corresponding rotation matrix is:

cos k�
ffiffi
3
p

3
sin k 2

ffiffi
3
p

3
sin k 0

� 2
ffiffi
3
p

3
sin k cos kþ

ffiffi
3
p

3
sin k 0

0 0 1

2
6664

3
7775: (1)

However, the allowed rotation angle k is not arbitrary if

there is no internal stress and strain present in the lattice.

The N times of the rotated lattice constants must be equal

to the M times of the underlayer lattice constants, where N
and M are integers. This means that this rotation matrix must

be always rational, so we are looking for three integers A, B,

and C which satisfy the relation of A2¼B2þ 3C2, i.e.,

sink ¼
ffiffiffi
3
p
ðC=AÞ and cosk¼B/A. Furthermore, the least

common integer in the denominator of the matrix is the

degree of fit (R), which is the reciprocal of the ratio of coin-

cidence sites to the total number of sites.

From the above analysis, one may easily find that the

(0001) twist boundaries rotated by k and 60�6 k must have

the same degree of fit (R) in hexagonal lattices. Table I lists

the allowed rotated angles k of the lattice vectors in the a-b
(or x-y) plane with respect to the R increases. Here we only

consider the first three Rs in detail due to the limits of com-

putational resources, but the main physical and optical prop-

erties remain for any other (0001) twist boundary in larger

scale.

In KBBF, each unit cell contains three (Be2F2BO3) 2D

layers. Therefore, in our studied models the twist boundary

can be created by dividing the structure along the c-axis and

rotating one third of the crystal with respect to the remainder

about the c-axis in a supercell. Here we ignore any internal

stress and strain inside the KBBF lattices, and assume that

the twist boundary is independent of the translation states

along the a-b plane. Figures 2, 3, and 4 show the geometries

for the R 1, R 7, and R 13 (0001) twist boundaries in KBBF,

respectively. The simplest twist boundary is created by rotat-

ing the three O atoms only around the central B atom in each

(BO3) group by 60.0� at the boundary while keeping the

other atomic positions unchanged, forming a so-called R 1

(BO3-R60.0) boundary [Fig. 2(a)]. The other type of R 1

boundary is shown in Fig. 2(b), in which all atoms at the

boundary are rotated by 60.0� about the c-axis [R 1 (R60.0)].

Figures 3(a), 3(b), and 3(c) show the geometries for the R 7

FIG. 1. (Color online) Space structure of perfect KBBF. (a) Side view of

the unit cell. (b) Depth-cue top view of detailed layer structure. The a-b vec-

tors indicate the crystallographic axes, and the x-y vectors indicate the opti-

cal dielectric axes. The c-axis (or z-axis) is normal to the paper plane and

points to the outside. Green (light gray) and blue (dark gray) triangles repre-

sent the planer (BO3) groups in the outmost and deeper layers, respectively,

as in all the following figures.

TABLE I. Allowed rotated angles h (0� � h � 90�) of the lattice vectors in

the a-b (or x-y) plane as the twist boundaries formed in hexagonal cell.

(Unit: degree).

R 1 7 13 19 31 37 …

Rotation 0.0 21.8 27.8 13.2 17.9 9.4 …

38.2 32.2 46.8 42.1 50.6 …

60.0 81.8 87.8 73.2 77.9 69.4 …
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twist boundaries with the rotated angles of 21.8� [R 7

(R21.8)], 38.2� [R 7 (R38.2)] and 81.8� [R 7 (R81.8)],

respectively. The R 13 twist boundaries with rotated angles

of 27.8� [R 13 (R27.8)], 32.2� [R 13(R32.2)] and 81.8� [R
13(R81.8)] are displayed in Fig. 4. Clearly, the orientation of

the (BO3) groups [green (light gray) arrows in Figs. 2, 3, and

4] at the R(k) twist boundary is in mirror symmetry about the

y-z plane with that at the R(60� � k) boundary, but is antipar-

allel to the orientation of the R(60� þ k) boundary, due to the

restriction of the point group symmetry in KBBF. These

structural modifications are expected to have significant

influences on the optical properties, especially the SHG

effects in KBBF, which are dominantly determined by the

(BO3) group.9,10

III. COMPUTATIONAL METHOD

The (0001) twist boundaries in KBBF are studied by the

plane-wave pseudopotential method.11 The CASTEP program12

is employed to perform the optimized geometries and the

electronic structure calculations. Ultrasoft pseudopotentials13

are used with the 1s electrons for beryllium, boron, and oxy-

gen treated as core electrons. For potassium, 3s, 3p, and 4s
electrons are chosen as the valence electrons. A high kinetic-

energy cutoff of 500 eV and the generalized-gradient

approximation (GGA) with the Perdew, Burke, and Ernzer-

hof exchange-correlation functional14 are chosen for all the

calculations. Monkhorst–Pack15 k-point meshes with a den-

sity of at least (7� 7� 1) points in the Brillouin zone of the

KBBF unit cell are used. The atomic positions are relaxed by

the Broyden, Fletcher, Goldfarb, and Shannon minimizer.16

The convergence thresholds between optimization cycles for

energy change, maximum force, and maximum displacement

are set as 10�5 eV/atom, 0.03 eV/Å, and 0.001 Å, respec-

tively. The optimization terminates when all of these criteria

are satisfied.

The relative stabilities of the twist boundaries are deter-

mined by the grain boundary energy r, and defined by

FIG. 2. (Color online) Top view of the R 1 twist boundary in KBBF. (a)

BO3-R60.0. (b) R60.0. It is worth noting that there are three orientations for

each (BO3) group, but they are equivalent to one another due to the D3 point

group symmetry. An orientation of the rotated (BO3) groups is indicated by

the green (light gray) arrow, while that of the original (BO3) groups is indi-

cated by the blue (dark gray) arrow. The dashed box represents a supercell

in which the twist boundary is formed.

FIG. 3. (Color online) Top view of the R 7 twist boundary in KBBF. (a)

R21.8. (b) R38.2. (c) R81.8. Symbol conventions are as for the preceding

figures.
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r ¼ ðEgb � NE0Þ=2A (2)

where Egb is the total energy of the supercell containing the

grain boundary, E0 is the total energy of a perfect KBBF unit

cell, N is the degree of fit R, and A is the twist boundary

area. The factor of 1/2 comes from the fact that two grain

boundaries are present in the supercell.

On the basis of the relaxed geometries, the electronic

band structures and the optical properties of KBBF contain-

ing the grain boundaries are obtained. The detailed formulae

for calculating the linear and nonlinear optical coefficients

are given in Ref. 9.

IV. RESULTS AND DISCUSSION

The calculated twist boundary energies in KBBF are

listed in Table II. It is clear that the value increases as the

degree of fit R increases, indicating that boundaries with

smaller R form easier. In particular, for the R 1 (BO3-R60.0)

twist boundary the 60� rotation of the (BO3) groups in the

a-b plane almost does nothing to the modification of the total

energy of the system and the calculated boundary energy is

negligibly small, so this boundary is the most favored in

KBBF. Indeed, very current structural measurements have

confirmed that the occurrence of new peaks in the XRD

spectrum is due to the formation of the R 1 (BO3-R60.0)

twist boundary in KBBF.17 In addition, with the increase of

the R the twist boundary energies are quickly converged to a

quite small value (< 50 meV/Å2). This can be understood by

the fact that the distance between adjacent in-plane layers in

KBBF is quite large, being 6.25 Å, so only very weak bond-

ing exists between the layers. However, in practice (0001)

twist boundaries may not be easy to form on a larger scale

considering the restriction of the surrounding crystalline

environments, and they would be evolved further to be the

more disordered defects.

On the other hand, it should be noted that our above cal-

culations are only based on the static atomic configurations

at absolute zero. In practice, the formation of twist bounda-

ries is strongly dependent on the thermodynamic environ-

ments. To estimate the energy barrier of the twist boundary

formed from the original perfect lattice, we use the complete

LST/QST algorithm18 to perform the transition state

searches, and find that the transition energy between the per-

fect and twist structure is very high. For example, even for

the R 1 (BO3-R60.0) twist boundary the transition energy is

about 3.0 eV per in-plane unit cell. Therefore, one may

explain the reason why the occurrence possibility of twist

boundaries (and other defects) in the H-KBBF is much

higher than in the F-KBBF as follows. It is well known that

the perfection of an as-grown crystal is controlled by the

interplay of the deposition and diffusion of adsorbed atoms

on the crystal surface.19 If deposition is slower than diffu-

sion, growth would occur close to equilibrium conditions,

but if deposition is faster than diffusion, then the pattern of

growth is essentially determined by individual processes,

notably those leading to metastable structures. Accordingly,

FIG. 4. (Color online) Top view of the R 13 twist boundary in KBBF. (a)

R27.8. (b) R32.2. (c) R87.8. Symbol conventions are as for the preceding

figures.

TABLE II. Calculated boundary energies and energy band gaps of the

defected KBBF crystals with various twist boundaries. Meanwhile, the cor-

responding UV optical absorption edges are also listed for clarification pur-

poses. To obtain these optical edges, a scissors operator, 2.44 eV, is adopted.

Boundary

Boundary energy

(meV/Å2)

Energy

bandgap (eV)

UV absorption

edge (nm)

Perfect

KBBF

— 5.83 150.0a

R 1 BO3_R60.0 �0 5.82 150.2

R60.0 15 5.84 149.8

R 7 R21.8 26 5.83 150.0

R38.2 26 5.81 150.4

R81.8 27 5.80 150.5

R 13 R27.8 34 5.73 151.8

R32.8 35 5.75 151.5

R87.8 34 5.76 151.3

aReference 4.
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in the hydrothermal growth autoclave the transportation of

growth solutes onto the crystal surface is quite quick, and the

adsorbed atoms can easily produce some metastable patterns

such as grain boundaries, dislocations, or twins, which are

difficult to recover to the minimum energy (perfect) configu-

ration due to the high energy barriers; while in the flux

growth process the growth environments can be subtly

controlled so that the occurrence of stacking faults is greatly

reduced.

It is known that the bandgap calculated by GGA, a

ground state theory, is in general smaller than the experimen-

tal data for the wide-bandgap insulator. However, our previ-

ous studies have demonstrated that actually the relative

magnitude of calculated bandgaps can be used to compare

the UV absorption edge in borate NLO crystals.10 The calcu-

lated energy bandgaps for various twist boundaries in KBBF

are shown in Table II. It is clear that the energy bandgap of

KBBF tends to be smaller as the degree of fit for the twist

boundaries becomes larger, but the narrowing magnitude is

very small. For instance, the calculated UV absorption edge

for the R 13 twist boundaries is red shifted only about 1.5

nm compared to the perfect KBBF. The detailed electronic

structure analysis shows that this narrow a bandgap is

because some 2p orbitals of the fluorine atoms at the bound-

ary occupy the valence band maximum and slightly affect

the bandgap.

The calculated refractive indices in several wave-

lengths for various twist boundaries are shown in Table III,

from which several conclusions can be obtained: (1) The

calculated refractive indices for the perfect KBBF crystal

are in good agreement with the experimental values, indi-

cating the reliability of the first-principles methods used.

(2) The KBBF crystal keeps as a uniaxial crystal form no

matter how the twist boundaries rotate about the c- (or z-)

axis. This is because in a uniaxial crystal the linear optical

response of the a-b (or x-y) plane to the incident radiation

is isotropic and independent of its rotation about the optical

z-axis. (3) Both the refractive indices and birefringence in

the perfect KBBF crystal are changed as the twist bounda-

ries [except R 1 (BO3-R60.0)] are formed. However, the

modifications of the linear optical constants are rather

small, typically less than 0.02. Therefore, the much worse

optical uniformity in the H-KBBF compared to the F-

KBBF may be attributed to the existence of other types of

defects, e.g., dislocations and twins. The relevant studies

are under investigation.

Table IV lists the nonzero SHG coefficients in KBBF

containing various twist boundaries. The perfect KBBF

belongs to the space group R32, so it has only two nonzero

dij coefficients, i.e., d11¼�d12 and d14, and the experimental

values are d11¼ 0.47 pm/V and d14 � 0.4 The calculated val-

ues in this work are d11¼ 0.430 pm/V and d14¼ 0, in very

good agreement with the experimental measurements, and

slightly better than the previous values (d11¼ 0.351 pm/V)9

using the local density approximation and norm-conserving

pseudopotentials. As the R 1 twist boundaries are created the

d11 coefficient becomes much smaller, only about one third

of the original value in the perfect KBBF. For the other twist

boundaries two more nonzero SHG coefficients d21 and d22

occur, and the dij coefficients satisfy the symmetry that

d11¼�d12 and d22¼�d21. All of the SHG coefficients are

smaller than the d11 coefficient in the perfect KBBF.

Table IV also displays the calculated results from a

semiempirical method called the anionic group theory,20

which provides a concise and substantial way to understand

the mechanism of NLO effects in UV NLO crystals. Accord-

ing to the anionic group theory, the overall SHG coefficients

d
ð2Þ
ijk in a NLO crystal are the geometrical superpositions of

the microscopic second-order susceptibilities of the anionic

groups, and have nothing to do with the essentially spherical

cations (e.g., Kþ cations in the case of KBBF).20 That is,

d
ð2Þ
ijk ¼

F

N

X
P

NP

X
i0j0k0

aii0ajj0akk0d
ð2Þ
i0j0k0 (3)

where F is the local field factor, V is the volume of a unit

cell, NP is the number of the pth anionic group in this unit

cell, and aii’, ajj’, and akk’ are the direction cosines between

the macroscopic coordinates of the crystal and the micro-

scopic coordinates of the pth group. d
ð2Þ
i0j0k0 is the microscopic

second-order susceptibility of the pth anionic group. Our

TABLE III. Comparison of the refractive indices in several wavelengths for

various twist boundaries. no (¼ nx and ny) and ne (¼ nz) are the refractive

indices for the ordinary and extraordinary radiation, respectively, and Dn is

the birefringence.

Refractive indices in several wavelengths

Wavelength (nm) 656.2 578.0 491.6 404.7

KBBF (Exp.)a no 1.4788 1.4811 1.4851 1.4915

ne 1.3954 1.3968 1.3993 1.4035

Dn 0.0834 0.0843 0.0858 0.0880

KBBF (Cal.) no 1.4718 1.4735 1.4767 1.4822

ne 1.4046 1.4059 1.4081 1.4119

Dn 0.0672 0.0676 0.0686 0.0703

R1 BO3_R60.0 no 1.4717 1.4735 1.4767 1.4822

ne 1.4045 1.4058 1.4080 1.4118

Dn 0.0672 0.0677 0.0687 0.0704

R60.0 no 1.4843 1.4859 1.4887 1.4836

ne 1.4215 1.4228 1.4250 1.4188

Dn 0.0628 0.0631 0.0637 0.0648

R7 R21.8 no 1.4972 1.4988 1.5016 1.5064

ne 1.4441 1.4453 1.4475 1.4512

Dn 0.0531 0.0535 0.0541 0.0552

R38.2 no 1.4969 1.4985 1.5012 1.5061

ne 1.4438 1.4450 1.4471 1.4509

Dn 0.0531 0.0535 0.0541 0.0552

R81.8 no 1.4972 1.4988 1.5016 1.5064

ne 1.4440 1.4453 1.4474 1.4512

Dn 0.0532 0.0535 0.0542 0.0552

R13 R27.8 no 1.4814 1.4830 1.4858 1.4907

ne 1.4282 1.4295 1.4316 1.4354

Dn 0.0532 0.0535 0.0542 0.0553

R32.2 no 1.4815 1.4831 1.4859 1.4908

ne 1.4270 1.4282 1.4303 1.4341

Dn 0.0545 0.0549 0.0556 0.0567

R87.8 no 1.4814 1.4830 1.4858 1.4907

ne 1.4268 1.4280 1.4302 1.4339

Dn 0.0546 0.0550 0.0556 0.0568

aReference 4.
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previous studies have revealed that for borate UV NLO crys-

tals the SHG effects are dominantly attributed to the anionic

(BO3)3� groups, and are independent of the translation states

of the (Be2F2BO3) layer along the a-b plane.10 Clearly, the

values from the anionic group theory are in excellent agree-

ment with those from the first-principles theory.

With the help of the anionic group theory, one may eas-

ily understand the structural origins of the SHG modifica-

tions in KBBF with respect to the twist boundaries as

follows. In the perfect KBBF lattice all the (BO3)3� groups

are aligned in the same orientation in the a-b planes [see Fig.

1(b)], so the geometrical superimposition of the microscopic

d
ð2Þ
i0j0k0 of all (BO3)3� groups is scalar without any counterac-

tion. Since in the present calculations three (Be2F2BO3)

layers are employed in each supercell, the (BO3)3� groups in

each layer exactly contribute one third of the overall SHG

coefficients, i.e., d
1=3
111 (Perfect)¼ 1/3d11(Perfect)¼ 0.143 pm/

V. As the R 1 twist boundary models are created the rotated

(BO3)3� groups are totally antiparallel to the original

(BO3)3� groups [comparison of the green (light gray) and

blue (dark gray) triangles in Fig. 2], and make a completely

counteractive contribution to the overall SHG effects, so the

coefficient d11 of the KBBF crystals having this type of twist

boundaries is only one third of the original value. More gen-

erally, for the other (0001) twist boundaries the orientation

of the rotated (BO3)3� group is no longer parallel or antipar-

allel to the others, and new nonzero SHG coefficients d
1=3
222

(¼�d
1=3
211) are generated. According to the geometry analysis

in Sec. II, the orientation of the rotated (BO3)3� groups at

the R(k) twist boundary is always in the mirror symmetry

about the y-z plane with that at the R(60� � k) boundary, but

is in antiparallel orientation to that at the R(60� þ k) bound-

ary [comparison of the green (light gray) arrows shown in

Figs. 2, 3, and 4, respectively]. Therefore, the projection of

the corresponding orientation vectors of the rotated (BO3)3�

groups onto the x- or y-axes [i.e., the direction cosines a’s in

Eq. (3)] directly determines the SHG coefficients of the

rotated layer, which must satisfy the following relation:

d
1=3
111ðRðkÞÞ ¼ �d

1=3
111ðRð60� � kÞÞ ¼ �d

1=3
111ðRð60� þ kÞÞ

¼ d
1=3
111ðPerfectÞ � cos 3k

d
1=3
222ðRðkÞÞ ¼ d

1=3
222ðRð60� � kÞÞ ¼ �d

1=3
222ðRð60� þ kÞÞ

¼ �d
1=3
111ðPerfectÞ � sin 3k

(4)

Consequently, the overall SHG coefficients for the KBBF

crystal containing the R(k) twist boundary is:

d11ðRðkÞÞ¼2d
1=3
111ðPerfectÞþd

1=3
111ðRðkÞÞ

¼1=3d11ðPerfectÞ�ð2þcos3kÞ¼�d12ðRðkÞÞ
d22ðRðkÞÞ¼d

1=3
222ðRðkÞÞ¼1=3d11ðPerfectÞ

�sin3k¼�d21ðRðkÞÞ

(5)

It is worth mentioning that in the above calculations we

only consider the twist boundary models in which each

supercell contains three in-plane layers. In practice, the

SHG coefficients in Eq. (5) are varied with respect to the

number of layers employed and rotated in the atomic mod-

eling. For instance, the SHG effects would vanish provided

that an even number of the layers is present and one half

are rotated by 60� with respect to the others in a supercell.

Moreover, one may see that the SHG coefficient d11 is the

largest as the orientations of all (BO3)3� groups are exactly

parallel to one another in the case of perfect KBBF, and the

value becomes smaller as long as the (0001) twist bounda-

ries are created.

The SHG capability of a NLO crystal is directly deter-

mined by the effective deff coefficients, which are expressed

for the perfect KBBF as follows:4

d11 cos h cos 3u ðtype�IÞ
d11 cos2 h sin 3u ðtype�IIÞ

(6)

The deff is maximum at u¼ 0� for type-I phase-matching

condition, while it is maximum at u¼ 30� or 90� for type-II

phase-matching condition. When the twist boundaries are

formed, one more independent nonzero SHG coefficient d22

(¼�d21) occur, and accordingly the effective deff coeffi-

cients become:

cos hðd11ðRðkÞÞ cos 3u� d22ðRðkÞÞ sin 3uÞ ðtype�IÞ
cos2 hðd11ðRðkÞÞ sin 3uþ d22ðRðkÞÞ cos 3uÞ ðtype�IIÞ

(7)

After some mathematic treatment one may easily find that

the modified deff coefficients [in Eq. (7)] are always smaller

than the values [in Eq. (6)] in the perfect KBBF. Namely, the

(0001) twist boundaries, no matter how they are rotated

around the c- (or z-) axis, reduce the SHG efficiency in

KBBF. Therefore, the occurrence of these structural defects,

TABLE IV. Calculated non-zero SHG coefficients in KBBF with various twist boundaries. The values determined by the anionic group theory are listed in

parentheses as comparisons (Unit: pm/V).

Boundary d11 d12 d21 d22

Perfect 0.430 �0.430 0.0 0.0

R 1 BO3_R60.0 0.143 (0.143) �0.143 (�0.143) 0.0 (0.0) 0.0 (0.0)

R60.0 0.142 (0.143) �0.142 (�0.143) 0.0 (0.0) 0.0 (0.0)

R 7 R21.8 0.340 (0.346) �0.340 (�0.346) 0.128 (0.130) �0.128 (�0.130)

R38.2 0.223 (0.226) �0.223 (�0.226) 0.130 (0.130) �0.130 (�0.130)

R81.8 0.228 (0.226) �0.228 (�0.226) �0.120 (�0.130) 0.120 (0.130)

R 13 R27.8 0.292 (0.302) �0.292 (�0.302) 0.138 (0.142) �0.138 (�0.142)

R32.8 0.260 (0.265) �0.260 (�0.265) 0.139 (0.142) �0.139 (�0.142)

R87.8 0.259 (0.265) �0.259 (�0.265) �0.138 (�0.142) 0.138 (0.142)
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with a much higher possibility in H-KBBF compared to

F-KBBF, is the main factor in deteriorating the capability of

SHG output in the former crystals, although other types of

stacking faults such as tilt grain boundaries, dislocations, and

twins may have some impacts as well.

V. CONCLUSIONS

In this work, the (0001) twist boundaries present in

KBBF have been studied, not only on their geometries, but

also on their energetic and optical properties based on the

first-principle density functional theory. It is found that the

twist boundary is most likely to be the R 1 (BO3-R60.0), con-

firmed by the current XRD data. The boundary energy

increases as the degree of fit increases but is converged to a

very low value due to the weak interaction between the a-b
layers. The corresponding energy band gaps almost keep as

the original value despite the influence of defect-induced

states. The refractive indices and birefringence are also

modified in a very tiny degree, and the uniaxial nature of the

linear optical properties in KBBF remains. With the help of

the anionic group theory it is further revealed that as the

(0001) twist boundaries are present in KBBF, resulting in the

microscopic NLO units going out of alignment, the SHG

conversion efficiency definitely decreases, and in extreme

cases the SHG effects vanish. In other words, the (0001)

twist boundaries need to be eliminated in order to enhance

the capability for producing SHG effects in KBBF. We

believe that these theoretical understandings have great

implications for improvement of the NLO performance in

KBBF, and even in other optical crystals.
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