JOURNAL OF APPLIED PHYSICS 109, 073721 (2011)

Influences of twist boundaries on optical effects: Ab initio studies of the
deep ultraviolet nonlinear optical crystal KBe,BO;F,

Z.S. Lin,"® Lei Bai," Lijuan Liu," M. H. Lee,?J. Xu,® Xiaoyang Wang,' and C. T. Chen'
'Beijing Center for Crystal R&D, Key Laboratory of Functional Crystals and Laser Technology, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, P. O. Box 2711, Beijing 100190, China
2Department of Physics, Tamkang University, Tamsui, Taipei 25137, Taiwan

3Department of Physics, Renmin University of China, Beijing 100872, China

(Received 14 November 2010; accepted 19 February 2011; published online 11 April 2011)

Twist boundaries in the deep-UV nonlinear optical crystal KBe,BOs;F, (KBBF) are studied
through first-principles calculations. It was found that the optical qualities and the capability for
second-harmonic generation (SHG) in KBBF obtained from the different single-crystal growth
methods are very different. These properties are associated with the presence of defects. Our
studies demonstrate that the (0001) twist boundaries in KBBF are easily formed due to the quite
weak interaction between the in-plane layers. These grain boundaries have very small influences on
the modifications of the UV optical absorption edge and the refractive indices in KBBF. However,
the SHG conversion efficiency in KBBF can be significantly deteriorated as the (0001) twist
boundaries occur, so it is necessary to eliminate these twist boundaries during the single-crystal
growth processes. Our theoretical results are consistent with experimental observations. © 2011

American Institute of Physics. [doi:10.1063/1.3569836]

. INTRODUCTION

KBe,BOsF, (KBBF) crystal is so far the sole nonlinear
optical (NLO) crystal that can break the “200-nm wall”’
in the deep-ultraviolet (DUV) spectrum using direct
second-harmonic generation (SHG), hence, it has important
applications in super-high-resolution laser photoemission
spectrography and photolithography.> However, KBBF
grows thin and platelike (only 3~4 mm thickness along the
c-axis) by the standard flux crystal-growth method,>* which
severely hinders its applications. Recently, a different crys-
tal-growth method, i.e., the hydrothermal method, has been
employed™® and KBBF crystals with thicknesses approach-
ing 1 cm have been achieved. However, the optical proper-
ties of hydrothermal-grown (H-) KBBF crystals are quite
different from those of flux-grown (F-) crystals: the optical
uniformity in the former crystals is much worse than in the
latter and, more evidently, the SHG capability in the H-
KBBEF crystals is much deteriorated; typically its conversion
efficiency is several times lower than in the F-crystals. All
these phenomena suggest that the H-KBBF crystals might
not be suitable for DUV SHG at the current stage of develop-
ment. Therefore, it is important to elucidate the mechanisms
that cause these optical differences in the H- and F-KBBF
crystals, which would be of great benefit to the improvement
of optical performance in H-KBBF.

Detailed structural comparisons between the H-KBBF
and F-KBBF have been performed by Yu er al.’” They
found that the x-ray diffraction (XRD) patterns in the
H-KBBF crystal are almost identical with those in the
F-KBBF, despite that three very small peaks occur in the
former’s XRD spectrum. This indicates that the KBBF
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crystals obtained by the different growth methods possess
very similar basic structural features. Meanwhile, there is
no evident distinction between the constituent chemical
element content in the F- and H-KBBF crystals, suggesting
that atomic vacancies or impurities are not the main factors
in producing the optical difference. Further transmission
electron microscope measurements demonstrated that the
H-KBBF crystal has many more stacking faults, such as
dislocations, grain boundaries, and twins, compared to the
F-KBBF. Therefore, Yu et al.” concluded that the optical
differences mainly resulted from the presence of structural
defects in KBBF. However, it is still unclear from experi-
mental measurements how the defects affect the optical
properties in KBBF, owing to the complicated crystalline
environments. These complicated situations can actually
be simplified by adopting another research strategy, i.e.,
atomic modeling, which is anticipated to provide insight
into the influences of respective defects in an effective
and precise way. We believe that these theoretical studies
can be widely applied to other nonlinear optical crystals
equally.

The space group of KBBF is R32 [point group D3
(32)],8 belonging to the uniaxial class, with dimensions of
a=b=4.427(4) A, c=18.744(9) A, and a Z value of 3. In
each unit cell, there are three (Be,F;B0O3),_ .., two-dimen-
sional (2D) layers perpendicular to the c-axis [Fig. 1(a)], in
which all planar (BOj3) groups are aligned in the same orien-
tation [comparison of the blue (dark gray) and green (light
gray) triangles in Fig. 1(b)]. In each in-plane layer three ter-
minal O atoms of all (BO3) groups link with the nearest
neighbor, while each Be atom links with a F atom outside of
the layer. Accordingly, one may easily find that one of the
simplest stacking faults in KBBF is the twist grain boundary
by rotating the (Be,F,BO3) layer about the c-axis, forming
the (0001) twist boundary. Indeed this type of grain
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FIG. 1. (Color online) Space structure of perfect KBBF. (a) Side view of
the unit cell. (b) Depth-cue top view of detailed layer structure. The a-b vec-
tors indicate the crystallographic axes, and the x-y vectors indicate the opti-
cal dielectric axes. The c-axis (or z-axis) is normal to the paper plane and
points to the outside. Green (light gray) and blue (dark gray) triangles repre-
sent the planer (BO3) groups in the outmost and deeper layers, respectively,
as in all the following figures.

boundary is one of the main stacking faults observed in the
H-crystals, much more commonly than in the F-crystals.’
Therefore, it is important to understand the influences of the
(0001) twist boundaries on the modifications of the optical
effects in KBBF.

In this work, the structural features of the (0001) twist
boundaries present in KBBF are studied, and their influen-
ces on optical properties are investigated using first-princi-
ples computational approaches. It is found that the (0001)
twist boundaries are indeed relatively easy to form because
of the quite small twist boundary energy, and their influ-
ence on the modifications of both the optical UV absorp-
tion edge and linear optical effects in the KBBF crystals is
only in a very tiny degree. However, the SHG capability in
KBBF can be heavily deteriorated by the (0001) twist
boundaries since the microscopic structural units are out of
alignment therein.

J. Appl. Phys. 109, 073721 (2011)

Il. (0001) TWIST BOUNDARIES IN KBBF

In a hexagonal lattice the (0001) twist boundary is
formed by rotating the a-b layers about the c-axis with an
angle (e.g., 4), so the corresponding rotation matrix is:

Cosi—ésinﬂu 23—‘/§sin)t 0

—%ﬁsin)t cos)»+§sin/l 0. 1)
0 0 1

However, the allowed rotation angle 4 is not arbitrary if
there is no internal stress and strain present in the lattice.
The N times of the rotated lattice constants must be equal
to the M times of the underlayer lattice constants, where N
and M are integers. This means that this rotation matrix must
be always rational, so we are looking for three integers A, B,
and C which satisfy the relation of A*=B*+ 3C2, ie.,
sinl = v/3(C/A) and cosi=B/A. Furthermore, the least
common integer in the denominator of the matrix is the
degree of fit (X), which is the reciprocal of the ratio of coin-
cidence sites to the total number of sites.

From the above analysis, one may easily find that the
(0001) twist boundaries rotated by /Z and 60° = 4 must have
the same degree of fit (¥) in hexagonal lattices. Table I lists
the allowed rotated angles A of the lattice vectors in the a-b
(or x-y) plane with respect to the X increases. Here we only
consider the first three Xs in detail due to the limits of com-
putational resources, but the main physical and optical prop-
erties remain for any other (0001) twist boundary in larger
scale.

In KBBF, each unit cell contains three (Be,F,BO3) 2D
layers. Therefore, in our studied models the twist boundary
can be created by dividing the structure along the c-axis and
rotating one third of the crystal with respect to the remainder
about the c-axis in a supercell. Here we ignore any internal
stress and strain inside the KBBF lattices, and assume that
the twist boundary is independent of the translation states
along the a-b plane. Figures 2, 3, and 4 show the geometries
forthe £ 1, X 7, and X 13 (0001) twist boundaries in KBBF,
respectively. The simplest twist boundary is created by rotat-
ing the three O atoms only around the central B atom in each
(BO3) group by 60.0° at the boundary while keeping the
other atomic positions unchanged, forming a so-called X 1
(BO3-R60.0) boundary [Fig. 2(a)]. The other type of X 1
boundary is shown in Fig. 2(b), in which all atoms at the
boundary are rotated by 60.0° about the c-axis [ 1 (R60.0)].
Figures 3(a), 3(b), and 3(c) show the geometries for the X 7

TABLE 1. Allowed rotated angles 0 (0° < 0 < 90°) of the lattice vectors in
the a-b (or x-y) plane as the twist boundaries formed in hexagonal cell.
(Unit: degree).

z 1 7 13 19 31 37

Rotation 0.0 21.8 27.8 132 17.9 9.4
38.2 322 46.8 42.1 50.6
60.0 81.8 87.8 732 71.9 69.4
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FIG. 2. (Color online) Top view of the X 1 twist boundary in KBBF. (a)
BO3-R60.0. (b) R60.0. It is worth noting that there are three orientations for
each (BO3) group, but they are equivalent to one another due to the D3 point
group symmetry. An orientation of the rotated (BO3) groups is indicated by
the green (light gray) arrow, while that of the original (BO3) groups is indi-
cated by the blue (dark gray) arrow. The dashed box represents a supercell
in which the twist boundary is formed.

twist boundaries with the rotated angles of 21.8° [X 7
(R21.8)], 38.2° [X 7 (R38.2)] and 81.8° [X 7 (R81.8)],
respectively. The X 13 twist boundaries with rotated angles
of 27.8° [X 13 (R27.8)], 32.2° [X 13(R32.2)] and 81.8° [X
13(R81.8)] are displayed in Fig. 4. Clearly, the orientation of
the (BO3) groups [green (light gray) arrows in Figs. 2, 3, and
4] at the R(A) twist boundary is in mirror symmetry about the
y-z plane with that at the R(60° — 1) boundary, but is antipar-
allel to the orientation of the R(60° 4+ 1) boundary, due to the
restriction of the point group symmetry in KBBF. These
structural modifications are expected to have significant
influences on the optical properties, especially the SHG

effects in KBBF, which are dominantly determined by the
(BOy) glroup.9’10

lll. COMPUTATIONAL METHOD

The (0001) twist boundaries in KBBF are studied by the
plane-wave pseudopotential method."' The castep program'?
is employed to perform the optimized geometries and the
electronic structure calculations. Ultrasoft pseudopotentials'?
are used with the 1s electrons for beryllium, boron, and oxy-
gen treated as core electrons. For potassium, 3s, 3p, and 4s
electrons are chosen as the valence electrons. A high kinetic-
energy cutoff of 500 eV and the generalized-gradient

FIG. 3. (Color online) Top view of the X 7 twist boundary in KBBF. (a)

R21.8. (b) R38.2. (c) R81.8. Symbol conventions are as for the preceding
figures.

approximation (GGA) with the Perdew, Burke, and Ernzer-
hof exchange-correlation functional'* are chosen for all the
calculations. Monkhorst—Pack'> k-point meshes with a den-
sity of at least (7 x 7 x 1) points in the Brillouin zone of the
KBBF unit cell are used. The atomic positions are relaxed by
the Broyden, Fletcher, Goldfarb, and Shannon minimizer.'®
The convergence thresholds between optimization cycles for
energy change, maximum force, and maximum displacement
are set as 107> eV/atom, 0.03 eV/A, and 0.001 A, respec-
tively. The optimization terminates when all of these criteria
are satisfied.
The relative stabilities of the twist boundaries are deter-
mined by the grain boundary energy ¢, and defined by
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FIG. 4. (Color online) Top view of the £ 13 twist boundary in KBBF. (a)
R27.8. (b) R32.2. (c) R87.8. Symbol conventions are as for the preceding
figures.

g = (Egb — NE())/zA (2)

where E,, is the total energy of the supercell containing the
grain boundary, E is the total energy of a perfect KBBF unit
cell, N is the degree of fit £, and A is the twist boundary
area. The factor of 1/2 comes from the fact that two grain
boundaries are present in the supercell.

On the basis of the relaxed geometries, the electronic
band structures and the optical properties of KBBF contain-
ing the grain boundaries are obtained. The detailed formulae
for calculating the linear and nonlinear optical coefficients
are given in Ref. 9.

IV. RESULTS AND DISCUSSION

The calculated twist boundary energies in KBBF are
listed in Table II. It is clear that the value increases as the
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TABLE II. Calculated boundary energies and energy band gaps of the
defected KBBF crystals with various twist boundaries. Meanwhile, the cor-
responding UV optical absorption edges are also listed for clarification pur-
poses. To obtain these optical edges, a scissors operator, 2.44 eV, is adopted.

Boundary energy Energy UV absorption
Boundary (meV/Az) bandgap (eV) edge (nm)
Perfect — 5.83 150.0*
KBBF
z1 BO;_R60.0 ~0 5.82 150.2
R60.0 15 5.84 149.8
7 R21.8 26 5.83 150.0
R38.2 26 5.81 150.4
R81.8 27 5.80 150.5
213 R27.8 34 5.73 151.8
R32.8 35 5.75 151.5
R87.8 34 5.76 151.3

“Reference 4.

degree of fit X increases, indicating that boundaries with
smaller £ form easier. In particular, for the £ 1 (BO5-R60.0)
twist boundary the 60° rotation of the (BOs3) groups in the
a-b plane almost does nothing to the modification of the total
energy of the system and the calculated boundary energy is
negligibly small, so this boundary is the most favored in
KBBF. Indeed, very current structural measurements have
confirmed that the occurrence of new peaks in the XRD
spectrum is due to the formation of the X 1 (BO5-R60.0)
twist boundary in KBBF.'” In addition, with the increase of
the 2 the twist boundary energies are quickly converged to a
quite small value (< 50 meV/A?). This can be understood by
the fact that the distance between adjacent in-plane layers in
KBBF is quite large, being 6.25 A, so only very weak bond-
ing exists between the layers. However, in practice (0001)
twist boundaries may not be easy to form on a larger scale
considering the restriction of the surrounding crystalline
environments, and they would be evolved further to be the
more disordered defects.

On the other hand, it should be noted that our above cal-
culations are only based on the static atomic configurations
at absolute zero. In practice, the formation of twist bounda-
ries is strongly dependent on the thermodynamic environ-
ments. To estimate the energy barrier of the twist boundary
formed from the original perfect lattice, we use the complete
LST/QST algorithm'® to perform the transition state
searches, and find that the transition energy between the per-
fect and twist structure is very high. For example, even for
the X 1 (BO3-R60.0) twist boundary the transition energy is
about 3.0 eV per in-plane unit cell. Therefore, one may
explain the reason why the occurrence possibility of twist
boundaries (and other defects) in the H-KBBF is much
higher than in the F-KBBF as follows. It is well known that
the perfection of an as-grown crystal is controlled by the
interplay of the deposition and diffusion of adsorbed atoms
on the crystal surface.'® If deposition is slower than diffu-
sion, growth would occur close to equilibrium conditions,
but if deposition is faster than diffusion, then the pattern of
growth is essentially determined by individual processes,
notably those leading to metastable structures. Accordingly,
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in the hydrothermal growth autoclave the transportation of
growth solutes onto the crystal surface is quite quick, and the
adsorbed atoms can easily produce some metastable patterns
such as grain boundaries, dislocations, or twins, which are
difficult to recover to the minimum energy (perfect) configu-
ration due to the high energy barriers; while in the flux
growth process the growth environments can be subtly
controlled so that the occurrence of stacking faults is greatly
reduced.

It is known that the bandgap calculated by GGA, a
ground state theory, is in general smaller than the experimen-
tal data for the wide-bandgap insulator. However, our previ-
ous studies have demonstrated that actually the relative
magnitude of calculated bandgaps can be used to compare
the UV absorption edge in borate NLO crystals.'® The calcu-
lated energy bandgaps for various twist boundaries in KBBF
are shown in Table II. It is clear that the energy bandgap of
KBBF tends to be smaller as the degree of fit for the twist
boundaries becomes larger, but the narrowing magnitude is
very small. For instance, the calculated UV absorption edge
for the X 13 twist boundaries is red shifted only about 1.5
nm compared to the perfect KBBF. The detailed electronic
structure analysis shows that this narrow a bandgap is
because some 2p orbitals of the fluorine atoms at the bound-
ary occupy the valence band maximum and slightly affect
the bandgap.

The calculated refractive indices in several wave-
lengths for various twist boundaries are shown in Table III,
from which several conclusions can be obtained: (1) The
calculated refractive indices for the perfect KBBF crystal
are in good agreement with the experimental values, indi-
cating the reliability of the first-principles methods used.
(2) The KBBF crystal keeps as a uniaxial crystal form no
matter how the twist boundaries rotate about the c¢- (or z-)
axis. This is because in a uniaxial crystal the linear optical
response of the a-b (or x-y) plane to the incident radiation
is isotropic and independent of its rotation about the optical
z-axis. (3) Both the refractive indices and birefringence in
the perfect KBBF crystal are changed as the twist bounda-
ries [except X 1 (BO3-R60.0)] are formed. However, the
modifications of the linear optical constants are rather
small, typically less than 0.02. Therefore, the much worse
optical uniformity in the H-KBBF compared to the F-
KBBF may be attributed to the existence of other types of
defects, e.g., dislocations and twins. The relevant studies
are under investigation.

Table IV lists the nonzero SHG coefficients in KBBF
containing various twist boundaries. The perfect KBBF
belongs to the space group R32, so it has only two nonzero
d;j coefficients, i.e., dyy = —d, and d, 4, and the experimental
values are d;; =0.47 pm/V and d4 ~ 0.* The calculated val-
ues in this work are d;; =0.430 pm/V and d;4=0, in very
good agreement with the experimental measurements, and
slightly better than the previous values (d;; =0.351 pm/V)’
using the local density approximation and norm-conserving
pseudopotentials. As the X 1 twist boundaries are created the
dy, coefficient becomes much smaller, only about one third
of the original value in the perfect KBBF. For the other twist
boundaries two more nonzero SHG coefficients d,; and d»,

J. Appl. Phys. 109, 073721 (2011)

TABLE III. Comparison of the refractive indices in several wavelengths for
various twist boundaries. n, (=n, and ny) and n. (=n.) are the refractive
indices for the ordinary and extraordinary radiation, respectively, and An is
the birefringence.

Refractive indices in several wavelengths

Wavelength (nm) 656.2 578.0 491.6 404.7
KBBF (Exp.)* Ny 1.4788 1.4811 1.4851 1.4915
ne  1.3954 1.3968 1.3993 1.4035

An 0.0834 0.0843 0.0858 0.0880

KBBF (Cal.) N 1.4718 1.4735 1.4767 1.4822
e 1.4046 1.4059 1.4081 1.4119

An  0.0672 0.0676 0.0686 0.0703

21 BO3_R60.0 n, 14717 1.4735 1.4767 1.4822
ne 14045 1.4058 1.4080 1.4118

An 0.0672 0.0677 0.0687 0.0704

R60.0 n,  1.4843 1.4859 1.4887 1.4836

e 1.4215 1.4228 1.4250 1.4188

An 0.0628 0.0631 0.0637 0.0648

X7 R21.8 no 1.4972 1.4988 1.5016 1.5064
ne 14441 1.4453 1.4475 1.4512

An  0.0531 0.0535 0.0541 0.0552

R38.2 no  1.4969 1.4985 1.5012 1.5061

e 1.4438 1.4450 1.4471 1.4509

An 0.0531 0.0535 0.0541 0.0552

R81.8 n, 14972 1.4988 1.5016 1.5064

ne 14440 1.4453 1.4474 1.4512

An 0.0532 0.0535 0.0542 0.0552

X13 R27.8 n, 14814 1.4830 1.4858 1.4907
e 1.4282 1.4295 1.4316 1.4354

An 0.0532 0.0535 0.0542 0.0553

R32.2 n, 14815 1.4831 1.4859 1.4908

ne 14270 1.4282 1.4303 1.4341

An 0.0545 0.0549 0.0556 0.0567

R87.8 n, 14814 1.4830 1.4858 1.4907

n. 14268 1.4280 1.4302 1.4339

An  0.0546 0.0550 0.0556 0.0568

“Reference 4.

occur, and the d;; coefficients satisfy the symmetry that
dy; = —d;» and dry = —d,;. All of the SHG coefficients are
smaller than the d;; coefficient in the perfect KBBF.

Table IV also displays the calculated results from a
semiempirical method called the anionic group theory,”®
which provides a concise and substantial way to understand
the mechanism of NLO effects in UV NLO crystals. Accord-
in% to the anionic group theory, the overall SHG coefficients
dffk in a NLO crystal are the geometrical superpositions of
the microscopic second-order susceptibilities of the anionic
groups, and have nothing to do with the essentially spherical
cations (e.g., K™ cations in the case of KBBF).20 That is,

2 F 2
di(jk = N ZP:NP zk: Ol Ojyr Ofkk’dl'(/_,'/)k/ (3)
I/j‘/ !

where F is the local field factor, V is the volume of a unit
cell, Np is the number of the pth anionic group in this unit
cell, and o, o>, and oy are the direction cosines between
the macroscopic coordinates of the crystal and the micro-
scopic coordinates of the pth group. d,.(,j,k, is the microscopic

second-order susceptibility of the pth anionic group. Our
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TABLE IV. Calculated non-zero SHG coefficients in KBBF with various twist boundaries. The values determined by the anionic group theory are listed in

parentheses as comparisons (Unit: pm/V).

Boundary dy; dis d>y dys
Perfect 0.430 —0.430 0.0 0.0

z1 BO;_R60.0 0.143 (0.143) —0.143 (—0.143) 0.0 (0.0) 0.0 (0.0)
R60.0 0.142 (0.143) —0.142 (—0.143) 0.0 (0.0) 0.0 (0.0)

7 R21.8 0.340 (0.346) —0.340 (—0.346) 0.128 (0.130) —0.128 (—0.130)
R38.2 0.223 (0.226) —0.223 (—-0.226) 0.130 (0.130) —0.130 (—0.130)
R81.8 0.228 (0.226) —0.228 (—0.226) —0.120 (—0.130) 0.120 (0.130)

213 R27.8 0.292 (0.302) —0.292 (—-0.302) 0.138 (0.142) —0.138 (—0.142)
R32.8 0.260 (0.265) —0.260 (—0.265) 0.139 (0.142) —0.139 (—0.142)
R87.8 0.259 (0.265) —0.259 (—0.265) —0.138 (—0.142) 0.138 (0.142)

previous studies have revealed that for borate UV NLO crys-
tals the SHG effects are dominantly attributed to the anionic
(BO3)*~ groups, and are independent of the translation states
of the (Be,F,BOs3) layer along the a-b plane.10 Clearly, the
values from the anionic group theory are in excellent agree-
ment with those from the first-principles theory.

With the help of the anionic group theory, one may eas-
ily understand the structural origins of the SHG modifica-
tions in KBBF with respect to the twist boundaries as
follows. In the perfect KBBF lattice all the (BO3)*~ groups
are aligned in the same orientation in the a-b planes [see Fig.

gb)] so the geometrlcal superimposition of the microscopic
d, e of all (BO3)*~ groups is scalar without any counterac-
tion. Since in the present calculations three (Be,F,BO;)
layers are employed in each supercell, the (BO5)*~ groups in
each layer exactly contrlbute one third of the overall SHG
coefficients, i.e. d111 (Perfect) = 1/3d;(Perfect) = 0.143 pm/
V. As the X 1 twist boundary models are created the rotated
(BO5)*~ groups are totally antiparallel to the original
(BO3)*~ groups [comparison of the green (light gray) and
blue (dark gray) triangles in Fig. 2], and make a completely
counteractive contribution to the overall SHG effects, so the
coefficient d;; of the KBBF crystals having this type of twist
boundaries is only one third of the original value. More gen-
erally, for the other (0001) twist boundaries the orientation
of the rotated (BO3)*~ group is no longer parallel or antipar-
allel to the others, and new nonzero SHG coefficients dzéz
(= _dzn) are generated. According to the geometry analysis
in Sec. II, the orientation of the rotated (BO3) groups at
the R(A) twist boundary is always in the mirror symmetry
about the y-z plane with that at the R(60° — A) boundary, but
is in antiparallel orientation to that at the R(60° + 1) bound-
ary [comparison of the green (light gray) arrows shown in
Figs. 2, 3, and 4, respectively]. Therefore, the projection of
the corresponding orientation vectors of the rotated (BO3)*~
groups onto the x- or y-axes [i.e., the direction cosines «’s in
Eq. (3)] directly determines the SHG coefficients of the
rotated layer, which must satisfy the following relation:

3 1 3 o 3 °
A} (R(2)) = ~dif}(R(60° = 1)) = ~di1} (R(60° + 1))
= d1{1 (Perfect) x cos 34
3 3 o 3 o
B (R(2)) = dyly (R(60° — 1)) = —d3j3 (R(60° + 1))
= *d1{1 (Perfect) X sin 34

“)

Consequently, the overall SHG coefficients for the KBBF
crystal containing the R(A) twist boundary is:

dy(R(2))=2d,{; (Perfect)+d ] (R())
=1/3d;; (Perfect) x (2-+cos34)=—d12(R(1))
dy (R(2))=dy}3 (R(2))=1/3dy (Perfect)
xsin3l=—dy; (R(1))

&)

It is worth mentioning that in the above calculations we
only consider the twist boundary models in which each
supercell contains three in-plane layers. In practice, the
SHG coefficients in Eq. (5) are varied with respect to the
number of layers employed and rotated in the atomic mod-
eling. For instance, the SHG effects would vanish provided
that an even number of the layers is present and one half
are rotated by 60° with respect to the others in a supercell.
Moreover, one may see that the SHG coefficient d;; is the
largest as the orientations of all (BO3)>~ groups are exactly
parallel to one another in the case of perfect KBBF, and the
value becomes smaller as long as the (0001) twist bounda-
ries are created.

The SHG capability of a NLO crystal is directly deter-
mined by the effective d.¢ coefficients, which are expressed
for the perfect KBBF as follows:*

dyjcosfcos3p  (type—I)

(type—II)

The des is maximum at ¢ =0° for type-I phase-matching
condition, while it is maximum at ¢ =30° or 90° for type-II
phase-matching condition. When the twist boundaries are
formed, one more independent nonzero SHG coefficient d,,
(=—d>;) occur, and accordingly the effective d.g coeffi-
cients become:

6
dncoszﬁsin3q> ©)

cos 0(d11(R(1)) cos 3¢ — dp(R(1))sin3¢)

) (type—1)
cos? 0(dy1(R(2)) sin3¢ + dy (R(1)) cos 3¢)

7
(type—II) w

After some mathematic treatment one may easily find that
the modified d.¢ coefficients [in Eq. (7)] are always smaller
than the values [in Eq. (6)] in the perfect KBBF. Namely, the
(0001) twist boundaries, no matter how they are rotated
around the c- (or z-) axis, reduce the SHG efficiency in
KBBF. Therefore, the occurrence of these structural defects,
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with a much higher possibility in H-KBBF compared to
F-KBBF, is the main factor in deteriorating the capability of
SHG output in the former crystals, although other types of
stacking faults such as tilt grain boundaries, dislocations, and
twins may have some impacts as well.

V. CONCLUSIONS

In this work, the (0001) twist boundaries present in
KBBF have been studied, not only on their geometries, but
also on their energetic and optical properties based on the
first-principle density functional theory. It is found that the
twist boundary is most likely to be the X 1 (BO5-R60.0), con-
firmed by the current XRD data. The boundary energy
increases as the degree of fit increases but is converged to a
very low value due to the weak interaction between the a-b
layers. The corresponding energy band gaps almost keep as
the original value despite the influence of defect-induced
states. The refractive indices and birefringence are also
modified in a very tiny degree, and the uniaxial nature of the
linear optical properties in KBBF remains. With the help of
the anionic group theory it is further revealed that as the
(0001) twist boundaries are present in KBBF, resulting in the
microscopic NLO units going out of alignment, the SHG
conversion efficiency definitely decreases, and in extreme
cases the SHG effects vanish. In other words, the (0001)
twist boundaries need to be eliminated in order to enhance
the capability for producing SHG effects in KBBF. We
believe that these theoretical understandings have great
implications for improvement of the NLO performance in
KBBEF, and even in other optical crystals.
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